Markus Leimbacher; Yixin Zhang; Luca Mannocci; Michael Stravs; Tim Geppert; Jörg Scheuermann; Gisbert Schneider; Dario Neri Chem. Eur. J., 2012, 18, 7729-7737 https://doi.org/10.1002/chem.201200952
Abstract
Libraries of chemical compounds individually coupled to encoding DNA tags (DNA-encoded chemical libraries) hold promise to facilitate exceptionally efficient ligand discovery. We constructed a high-quality DNAencoded chemical library comprising 30 000 drug-like compounds; this was screened in 170 different affinity capture experiments. High-throughput sequencing allowed the evaluation of 120 million DNA codes for a systematic analysis of selection strategies and statistically robust identification of binding molecules. Selections performed against the tumor-associated antigen carbonic anhydrase IX (CA IX) and the pro-inflammatory cytokine interleukin-2 (IL-2) yielded potent inhibitors with exquisite target specificity. The binding mode of the revealed pharmacophore against IL-2 was confirmed by molecular docking. Our findings suggest that DNA-encoded chemical libraries allow the facile identification of drug-like ligands principally to any protein of choice, including molecules capable of disrupting high-affinity protein-protein interactions.