DNA-templated functional group transformations enable sequence-programmed synthesis using small-molecule reagents

Kaori Sakurai; Thomas M. Snyder; David R. Liu
J. Am. Chem. Soc., 2005, 127(6), 1660-1661
https://doi.org/10.1021/ja0432315

Abstract

DNA-templated organic synthesis (DTS) has previously been used primarily to direct coupling reactions between two DNA-linked reactants. In some cases, reactants are difficult or impossible to tether to DNA oligonucleotides. The development of strategies that enable non-DNA linked small-molecule reagents to participate in sequence-programmed synthesis therefore would significantly expand the capabilities of DTS. We developed efficient DNA-templated functional group transformations of template-linked azides into corresponding amines, carboxylic acids, and thiols. The application of these reactions to a single-solution mixture of four template-linked organic azides enabled each azide to be transformed sequence specifically into a sulfonamide, carbamate, urea, or thiourea using small-molecule sulfonyl chloride, chloroformate, isocyanate, or isothiocyanate reagents not tethered to DNA. Only the four desired products were observed, without formation of any of the 12 possible undesired cross-products. Our results represent a new approach to small molecule diversification in a DNA-programmed manner.

logo
logo